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Note from C3.ai

C3.ai commissioned a third-party system integrator – with extensive experience in 
developing enterprise applications on the AWS cloud for Fortune 1000 customers –  
to develop a Predictive Maintenance application for a network of devices, to run on  
the AWS cloud. The system integrator was given a Product Specification and asked  
to develop the same application using two approaches:

1.	 Build the application using only AWS native services;

2.	 Build the application using the C3 AI Suite in combination with AWS services. 

The following report was written by the third-party system integrator to describe their 
process in developing the application, including a detailed account of developer time, 
effort, and coding required using each approach.  

Readers can download the following documents as separate PDF files:

•	 Product Specification: Predictive Maintenance Application for a Network of Devices 

•	 Complete Source Code for the AWS Application and for the C3.ai + AWS Application 

https://c3.ai/wp-content/uploads/2020/04/Device-Predictive-Maintenance-Specification6.pdf
https://c3.ai/wp-content/uploads/2020/04/C3.ai-Device-Predictive-Maintenance-Source-Code.pdf
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Executive Summary

Based on recent research from renowned IT 
and management consulting firms, the impact of 
Artificial Intelligence (AI) on the global economy 
is forecasted to be massive. In a 2016 report, 
Forrester predicted that AI-driven companies 
would realize $1.2 trillion in additional annual 
economic value compared to their laggard peers 
by 2020. This appears to have been a conservative 
forecast.  McKinsey Global Institute now forecasts 
$3.5 - 5.8 trillion impact from AI by 2020. 

While some of this value will accrue from 
organizations applying AI to relatively simple 
datasets and business processes (e.g., sales 
forecasting, customer churn, facility energy 
management), the bulk of this value will come 
from organizations applying AI to complex 
datasets and business processes (e.g., supply 
network and inventory optimization, process 
optimization, maintenance optimization, fraud 
detection). These complex AI applications 
require an architecture that ingests data from 
multiple IoT and transactional systems in near-
real time; blends these data together; enhances 

these data with master data from an array of 
enterprise, operational, and third party data 
sources; uses these unified data to train predictive 
and optimization models to generate actionable 
insights; and embeds these insights into a 
business process. 

The current trend for building even simple 
enterprise AI applications is to take a 
microservices “building blocks” approach, 
where the end-customer and/or their consulting 
partners integrate cloud service provider (CSP) 
microservices together to build the componentry 
to design, develop, host, and operate an 
application, followed by building bespoke 
application logic. C3.ai, on the other hand, offers 
a cohesive, low-code platform – the C3 AI Suite. 
This report compares the approach of using 
CSP building blocks to using the C3 AI Suite in 
conjunction with CSP microservices.

Our firm, a Premier AWS consulting partner with AWS competencies in Big Data and Machine Learning,  
was commissioned by C3.ai to conduct the Device Predictive Maintenance development project described 
in this document, and to prepare the following report of our findings and analysis.

Background

https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
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Three of our senior commercial software 
engineers built a simple Predictive Maintenance 
application (the “Application”) using native AWS 
services and compared it to building the same 
Application on the C3 AI Suite in conjunction with 
AWS services. 

We found that C3.ai reduced the effort and 
accelerated the development process by 
a factor of 26 times, while also reducing 
development risks. For less experienced teams, 

this could easily increase to 50 - 100 times due to 
the breadth and complexity of the AWS offering. 
Further, C3.ai solves the challenges of security, 
extensibility, and scalability – while streamlining the 
skills needed in an enterprise development team. 

To build the application using native AWS 
services requires 83,000 lines of source code 
and documentation. Using the C3 AI Suite with 
AWS services required 1,450 lines of source 
code and documentation, a 99% reduction.

Findings

Figure 1: The C3 AI Suite in combination with AWS provided a 26x improvement in developer productivity compared to building the same  
application using only native AWS services. 
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Time and Cost of Development 

As this report illustrates, the C3 AI Suite 
substantially accelerates development, allowing 
customers to derive economic value from AI 
applications faster than by building the necessary 
platform components themselves.

Risk Mitigation 

Even organizations with well-funded IT 
departments and highly-skilled developers 
face substantial risks in building, deploying, and 
maintaining new applications. This risk increases 
many-fold when the scope grows beyond one 
simple application. The C3.ai Type System 
reduces their exposure to the array of risks that 
face a company developing custom, enterprise-
scale software.

Complexity 

Stitching together core infrastructure, enterprise 
software, platform services, data science services, 
and UI components into a production-scale 
application is a task of enormous complexity. 
Companies that attempt to construct custom 
AI platforms using building blocks risk pouring 
time and resources into projects that fail to reach 
production or deliver on their value proposition. 
C3.ai, by abstracting away the underlying 
infrastructure and presenting all data and services 
as accessible, manipulatable Types, minimizes this 
risk.

Extensibility 

Companies that overcome the complexity of 
building a single AI application face the risk that 
their work will not be extensible – the data model 
cannot be extended to serve a second application 
or code is specific to infrastructure components 
that the company has decided to abandon or that 
have become obsolete. Applications built using 
the C3.ai Type System are tied to metadata rather 
than the underlying data and storage infrastructure 
and are thus fully extensible to support new data 
sources, infrastructure, algorithms, and platform 
services.

Security 

Getting a working application is complex enough 
– encrypting all data in transit and at rest, limiting 
access to data at the row and user level, and 
guaranteeing backup, failover, and redundancy 
add new layers of complexity and represent major 
risks for applications that expose the enterprise’s 
most sensitive data. C3.ai, which provides 
accredited, comprehensive security measures as 
part of its platform services, mitigates these risks.

Maintenance & Support 

AI applications built from scratch risk breaking 
when data sources, use cases, and support staff 
change. Companies are forced to divert resources 
to maintenance, which dilutes the value that AI 
applications deliver, limits new development, 
and increases the probability of abandoning 
applications altogether. C3.ai mitigates this risk 
in two ways – by offering a flexible platform 
that requires less maintenance than a bespoke 
solution, and by providing support resources and 
training as part of its solution.
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Scalability 

Infrastructure scalability is crucial to enable 
applications built on small data sets to scale to 
the enterprise. AWS enables scalability typically 
through a manual process to request, provision, 
and integrate additional compute and storage 
resources. C3.ai employs a modular scale-
out architecture that automatically requests, 
provisions, and releases computing resources 
based on the need and makes it simple to add 
more storage and other resources. Application 
scalability is also crucial to enable organizations 
to add more data, new sources of data, new 
transforms of data coming from different parts 
of the organization, or new application logic to 
extend previously built use cases. Native AWS 
development would require structural code 
changes and rewriting the entire application to 
incorporate these changes. C3.ai mitigates this 
risk via the C3.ai Type System’s metadata-based 
abstraction. 

Resource Capability 

AWS development requires a very broad skill set 
in an organization’s developers. At the most basic 
level, all developers need an understanding of 
AWS development principles, while specific team 
members might require a range of skills – ranging 
from networking and Linux server configuration 
to the specific details of the various managed 
services – unique to each CSP, that come with 
their own methods of utilization. Additionally, 
organizations need to make a significant resource 
investment in DevOps to ensure that what they are 
building on AWS can mature in a safe and scalable 
way. For reference, AWS recommends a year of 
experience working in the AWS platform prior to 
securing a basic AWS certification.
 
For C3.ai, a foundation in object-oriented concepts 
such as inheritance and static typing as well as 
exposure to the domain-specific syntax are the 
only critical skills required to understand the 
development approach. A typical C3.ai developer 
receives five days of training and is usually 
proficient in three months depending on skill level 
and prior experience. 
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Project Narrative

Our team of highly skilled developers compared 
building a simple Predictive Maintenance 
Application on a network of connected devices 
using native AWS services (the “AWS Application”) 
to using the C3 AI Suite (the “C3.ai Application”) 
with AWS services. In both cases, we sought to 
ingest, unify, and federate the raw data, process it, 
train a machine learning model that predicts which 
device is likely to fail in the following 30 days, and 
build an application user interface. 

The provided datasets for the Application  
included:

•	 Device type, location, manufacturer,  
and date of manufacture

•	 Power grid status

•	 Device power source location

•	 Device telemetry

•	 Device event history

•	 Device power source data

Building a risk prediction model for each device 
required that the telemetry/measurement data be 
analyzed over time. For example, the Application 
uses the following time-series data:

•	 Average Power per Device – Power usage 
over time for the device

•	 Duration On per Device – The total amount 
of time (in hours) that a device has been 
powered on up to the interval

•	 Switch Count per Device – The number of 
times a device is powered on or off 

•	 Power Grid Status per Building – An external 
factor indicating whether the local power grid 
was functional over time at a specific building

The objective of the application is to predict the 
likelihood of device failure within the next 30 
days from a given point in time. It is left up to the 
development team how to make this prediction, 
although the industry best practice is to train a 
machine learning model using the provided data. 
With this predictive model in place, predictions 
must be generated as new data is received for 
each device.

To make the predictions actionable, they must be 
presented to end users. The user interface for the 
Application consists of two screens and seven 
displays reporting on the number, location, risk 
score, and status of devices as seen below:
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A summary of key metrics including the total 
number of devices at risk, the total number of 
devices, and the number of failures YTD

1. 

A map showing the location of all devices, 
colored green for devices with risk scores 
<50% and red for risk scores >50%

3. 

A summary of key metrics including the 
current risk score, status, power and  
temperature of the selected device

1. 

A histogram showing the distribution of 
devices, grouped by risk score

2. 

A table of device-level detail, including device 
ID, risk score, type, manufacturer, and date of 
install

4. 

A chart illustrating the selected device’s risk 
score over time

2. 

Figure 2: UI Screen 1 – Four displays showing the status and health of the entire population of devices.

All elements on the screen can be filtered by multiple dimensions.
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A summary of key metrics including the total 
number of devices at risk, the total number of 
devices, and the number of failures YTD

3. 

Figure 3: UI Screen 2 – Three displays showing the health and history of an individual device (accessed by selecting a device from the table  
in Screen 1)

AWS Build

The architecture for the AWS Application, as 
depicted in Figure 4, made heavy use of AWS 
managed services, including AWS Lambda for 
serverless processing, Amazon Kinesis for data 
streaming, Amazon S3 for storing raw data, 
Amazon API Gateway for RESTful services, and 
Amazon SageMaker for machine learning training 
and inference. In addition, we utilized Amazon’s 
Relational Database Service (RDS) and Amazon 
DynamoDB, a NoSQL distributed key-value store 
database, for persistence. 

This architecture stems from our collective years 
of experience working with AWS services. Our 
firm is a Premier AWS consulting partner with 
AWS competencies in Big Data and Machine 
Learning, and we have developed and deployed 
hundreds of applications on AWS for hundreds of 
Fortune 1000 customers. 

At the onset of the project, our team agreed to 
eliminate the need for the low-level management 
of server and network resources. This worked 
well in practice and provided our developers with 
the flexibility to manage multiple simultaneous 
workstreams. By breaking the application 
into numerous independent microservices/
components, the team was able to work in parallel 
integrating each service while avoiding code 
contention with the other developers. 
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 AWS Platform Architecture for Device Predictive Maintenance Application

Figure 4: AWS Architecture for Device Predictive Maintenance 
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Infrastructure Configuration

Our work began with creating a new AWS account, 
configuring basic networking, and establishing 
access control and security policy permissions. 
As we began development, the data lake and 
necessary infrastructure for a data processing 
pipeline was created. The data lake consisted of 
Amazon S3, DynamoDB, and RDS. The processing 
pipeline was a series of AWS Lambda functions 
that were linked together by Amazon Kinesis 
Streams, allowing data to flow through each 
stage of ingestion, modeling, enhancement, and 
transformation. These resources were managed 
using Amazon’s infrastructure-as-code service, 
AWS CloudFormation, to easily and quickly create 
re-useable templates to provision and configure all 
necessary infrastructure. The easiest component 
of the architecture, the S3 data lake and its 
associated data stores RDS and DynamoDB, took 
0.5 FTE (full-time-equivalent) days to implement 
and deploy. This was one of seven CloudFormation 
templates, each growing in complexity as we built 
up the architecture layers. Each CloudFormation 
template ranged from hundreds to thousands of 
lines of custom code.

Deployment was a manual process that involved 
uploading the templates into CloudFormation 
and then running them to create or update the 
infrastructure. The AWS documentation reasonably 
described which resource parameters are 
necessary for a specific template resource and 
the AWS console provided specific feedback if an 
attempted template upload had errors or required 
refactoring. While we were able to understand 
and respond to these issues rapidly given our 
experience with AWS, our assessment is that 

a typical organization would need to build very 
robust DevOps pipelines and devote significant 
resourcing to ensure changes are promptly and 
definitively pushed into the account. 

With three FTEs and the scope, we configured 
the AWS Application’s infrastructure in eight 
days. An enterprise architecture team with less 
experience on AWS would reasonably take at 
least twice as long. It is notable that infrastructure 
configuration is a continuous process throughout 
the development lifecycle and requires ongoing 
maintenance post-deployment. Each AWS 
service we utilized has unique networking and 
permissions configurations that must be tweaked 
and debugged. 

Data Model 

To optimize for scalability, extensibility, and 
usability, we designed the AWS Application to 
leverage two databases. We used Amazon RDS, 
a fully managed relational database service, to 
store static structured data – device type, location, 
manufacturer, etc. To create our relational data 
model, custom SQL was hardcoded to define 
each table in our database. This manual process 
provided the necessary structure to easily store, 
organize, and query data. We used Amazon 
DynamoDB, a fully managed NoSQL distributed 
key-value store database, to store dynamic data – 
e.g., device telemetry. Unlike relational databases, 
NoSQL databases do not require a pre-defined 
data model. 

Without two databases, we would be limited 
in our ability to filter on data, explore data, and 
evaluate the timed interval relationships between 
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data objects. It would also couple the scaling 
of both data sources to a single configuration 
setup. By separating the two storage services, 
we can scale DynamoDB independently of 
RDS for both improved performance and cost 
savings compared to running a single, larger, and 
more expensive RDS instance. A two-database 
architecture was in sync with our microservice-
based approach.

While creating the AWS Application’s data model 
was possible for one FTE in eight hours, an 
enterprise architecture team with less experience 
on AWS and internal constraints on database 
structure would reasonably take twice as long. 
Further – and this is extremely crucial given 
our experience – changing or extending the 
data model would require the data model to be 
entirely refactored/rebuilt.

Data Integration

Our initial data integration effort involved manually 
loading the raw CSV data via MySQL tooling. If the 
data were in a different format it would have likely 
involved writing either custom parsers or manually 
converting the data into a more usable format 
combined with potentially writing the raw SQL 
commands to insert this data. Furthermore, this 
process was entirely manual at the outset of the 
project to “seed” the initial data with no process in 
place for the ongoing ingestion of new data. While 
this would not be a difficult process to engineer, 
it would require more development time along 
with a process to be put in place to allow for more 
power sources, devices, apartments, etc., to be 
introduced into the system for future use. 

While integrating data required two FTEs for three 
days, an enterprise architecture team with less 
experience on AWS would reasonably take 50% 
more time. 

Time-Series Metrics and Machine Learning

Once we integrated the raw data, we began 
preparing it for our machine learning process. To 
create our time-series metrics/machine learning 
features, we wrote custom logic in NodeJS and 
used Amazon Lambda’s serverless computing 
service to execute at run-time. Lambda allowed us 
to easily deploy our custom logic and orchestrate 
it with AWS streaming service Kinesis, with 
less overhead and infrastructure configuration. 
However, our team encountered difficulty 
configuring the networking for the various AWS 
services we utilized. While a serverless approach 
typically removes the need for networking 
considerations, using Amazon RDS necessitated 
hands-on networking configuration. Our Lambda 
functions had to be placed into subnets within 
our VPC, which then required establishing VPC 
Endpoints to connect out to the AWS managed 
services such as AWS Key Management Service, 
DynamoDB, and SageMaker. In addition, we had 
to configure a new NAT Gateway to facilitate 
our enhancement function to make calls over 
the internet to the weather endpoint provided 
by C3.ai. These changes required more manual 
configuration of the networking layer and could 
prove to be problematic for teams without a 
strong knowledge of AWS networking concepts. 
Additionally, this led to extra work that was not 
estimated and required unplanned developer time.
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Another key difficulty was transforming our 
time-series metrics into the proper format 
for Amazon SageMaker. Rectifying this 
required a trial-and-error process and relying 
on colleagues with extensive experience 
working with SageMaker and its DeepAR 
algorithm. After revising and refactoring our 
approach for building the raw model input, 
we were able to successfully create a process 
for building machine learning models and for 
creating a request object that integrated with 
SageMaker. This effort involved complex custom 
code and changing the algorithm required 
significant rework of the preparation process. 
The lack of usability is one reason an iterative 
approach needed to be taken until the process 
fully integrated with SageMaker DeepAR. Once 
the model and request object were successfully 
created and integrated, it was easy to get 
predictions from SageMaker. However, additional 
code was required to join the predictions into the 
data model and store in Amazon RDS. 

Precision relates to the proportion of device 
failures that were correctly predicted. Recall is the 
proportion of actual high-risk devices that were 
identified correctly. The area under the receiver 
operating characteristic curve was .795.

While creating 13 time-series metrics and one 
machine learning classifier was possible with 
2.5 FTEs in 14 days, an enterprise architecture 
team with less experience on AWS, especially 
with AWS networking concepts, would 
reasonably take twice as long given their lack 
of experience.  
 

Analytics

A separate process was created to evaluate and 
save metrics based on specific rules and use 
cases. Once a device measurement had been 
ingested and transformed, an analytics service 
written in Lambda was used to check if any rules 
were satisfied. If so, a new record was saved 
into RDS to mark the analytic as triggered and a 
message was sent to Amazon Simple Notification 
Service. This allows for emails, text messages, 
or other notifications to be triggered so that 
further action can be taken as a result – e.g., 
“Inspect this device.” Expanding the notifications 
simply involves writing further use cases and 
incorporating them into the analytics service.

While this was possible for two FTEs in three days 
given the team’s expertise, a normal enterprise 
architecture team would reasonably take 50% 
more time.

User Interface

Building the Application’s UI required exposing 
RESTful APIs that served the results of our 
time-series metrics. To accomplish this, we 
utilized Amazon API Gateway with Lambda 
functions written in NodeJS. The API Gateway 
configuration was completed in CloudFormation 
using an OpenAPI specification combined with 
specific configuration elements for the API 
Gateway. Configuring Cross-origin resource 
sharing (CORS), which enables the client 
application to call the APIs directly from the 
browser, in the CloudFormation templates was 
challenging. We reverse engineered the methods 
and headers that the API Gateway console 
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automatically adds when enabling CORS and 
figured out the corresponding CloudFormation 
syntax. We spent many iterations to successfully 
set up and test CORS. The Device API accessed 
RDS and DynamoDB, requiring different data 
access methods to be written for each database 
and different sets of permissions that needed to 
be set up and configured in the CloudFormation 
templates. It would be ideal to establish an 
architecture that abstracts the data access 
methods; however, it would require development 
time to create and maintain the methods and 
configuration to access those data stores. The 
API was secured with an API key, which also 
required moderately complex CloudFormation 
configuration.

The UI components were built using Angular 6 
and hosted with S3 and Amazon CloudFront. 
TypeScript, SASS, RxJS, Angular Material, 
and the Angular FlexLayout were the primary 
front-end technologies utilized for the Angular 
components. The components can be easily 
added and removed without affecting the other 
components on the page. We spent one FTE day 
to ensure that duplicate API calls would not be 
made for a component if another component 
already retrieved the data. The components 
share a service that provides the API results as a 
RxJS observable. The observable provides the 
API data for the components and will refresh the 
components that are subscribed to it when new 
data is generated. This allows the components 
to efficiently retrieve data refreshed without a 
postback for actions such as filtering. We used 
client-side filtering, sorting, and paging for the 

detail tables, but these actions will need to be 
done on the server side if the quantity of data for 
the component becomes too large. Server-side 
filtering, sorting, and paging would add one week 
to the development effort, plus two to three days 
for unit testing.

Hosting the front-end application on S3 alone, 
while possible, does not provide enough 
granular control over permissions and routing. 
We used CloudFront as an entry point to S3 
and restricted access to only allow CloudFront 
access to the S3 bucket via an Origin Access 
Identity. Through CloudFront, we can enable 
client-side routing functionality and manage the 
access, custom error messages, and geographic 
distribution. All the S3, CloudFront, and Origin 
Access Identity setup was done through a 
CloudFormation template.

While creating the Application’s UI and integrating 
it with our backend architecture was possible with 
two FTEs in 23 days, an enterprise architecture 
team with less experience would reasonably take 
20% more time.
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AWS Implementation Timeline: 26 Person-Weeks

C3.ai + AWS Build

Figure 5  
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Developing the same Application with the C3 AI Suite in combination with AWS was much simpler. 
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Infrastructure Configuration 

The C3 AI Suite does not require any 
infrastructure to be configured or maintained. 
Deploying a new instance of the C3 AI Suite on 
AWS takes four person hours. Deploying a new 
C3.ai tenant within an existing instance on AWS 
takes approximately three minutes. 

Data Model

We began building the C3.ai Application by 
creating C3.ai Types for use in our application. 
Types are representations in code of any business 
relevant objects – for instance, real-world entities 
that make up a business – in this case, devices, 
buildings, facilities, manufacturers, etc. Each Type 
contains the metadata that define its relevant 
datastores (distributed file system, relational, 
NoSQL) and its relationships to other Types in the 
data model (e.g., one facility has ten devices from 
a single manufacturer). The C3.ai Type System 
allows individuals with different functions and 
specializations – e.g., developers, data scientists, 
and business analysts – to work on a shared 
abstraction layer without having to configure 
or maintain the underlying data federation and 
storage models, dependencies, or infrastructure. 
Building the Application’s data model with the 
C3.ai Type System required six hours and one 
FTE. 

Data Integration 

We then used the C3 AI Suite’s native data 
integration capabilities to integrate, index, and 
normalize the device data. Prior to integrating 
data, we created six canonical Types for each of 
the data sources. The C3 AI Suite includes native 

functionality to import data from any source – 
while we worked with CSV files, the C3 AI Suite 
includes pre-built connectors to commonly-used 
relational databases, NoSQL databases, and 
distributed file systems – and map all fields to 
C3.ai Types for access by data scientists and 
developers. Integrating data required six hours 
and one FTE.

Time-Series Metrics

We then used our C3.ai Types to generate 13 
metrics, which fetch Type data to produce a 
normalized time-series. Metrics serve as features 
in machine learning algorithms and can be 
incorporated into application logic. We also wrote 
some methods for the Device Type, which allow 
for more complex calculations on the data using 
JavaScript or Python. Creating the 13 metrics 
required eight hours for one FTE.

Analytics

Next, we used the C3 AI Suite’s native 
asynchronous processing engine to create data 
flow events (DFEs). Using DFEs, we created three 
analytics that automatically generate operator 
alerts when certain operating thresholds were 
met/exceeded. These alerts could be routed via 
email or SMS messages. Creating these three 
analytics and configuring the DFEs required 
one FTE for six hours.

Machine Learning

We created risk-of-failure scores for the 
Application’s devices using Jupyter Notebook 
and Python, both supported natively by the C3 
AI Suite. Having the full functionality of the C3 AI 
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Suite and C3.ai Type System natively integrated 
with Jupyter Notebook provides easy access for 
data scientists to leverage tools that are familiar 
and effective. We trained a classification model 
that regressed the metrics SwitchCountWeek 
and DurationOnInHours against the dependent 
variable WillFailNextMonth to calculate the 
probability of failure in the next 30 days. We stored 
this rolling risk score as its own time-series metric 
RiskScore. Machine learning algorithms in the C3 
AI Suite operate on all existing data, create new 
data that can be automatically attached to a C3.ai 
Type for future processing, and automatically 
update training and make predictions on the latest 
available data. 

For the C3.ai Application, the area under the 
receiver operating characteristic curve was .990. 
Training the machine learning model and the 
machine learning pipeline required one FTE for 
six hours.

User Interface

We incorporated several of our Types and metrics 
in a web interface built using custom C3.ai HTML 
and UI templates. We used these to create the 
dashboard of the Application. The dashboard UI 
template was one JSON-styled file that contained 
the code for the components of the dashboard 
such as a status map, a filter, a histogram and 
a table. Our UI also included continuously and 
automatically updated predictive risk scores about 
the likelihood of device failures (incorporated 
using the RiskScore metric). Finally, we created 
a few simple potential roles that would be used 
by future users of the Application. These roles 
consisted of restricting users to permissions for 
specific use cases pertinent to the user. Building 
the UI and configuring access controls required 
one FTE for four hours.

AWS + C3.ai Implementation Timeline: 1 Person-Week

Figure 7 

Infrastructure Configuration

Develop Data Model

Integrate Data

Develop Time Series, Metrics, 
and Machine Learning

Develop Analytics

Create APIs and UI

AWS + C3.ai Build - 
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Comparative Observations

After building the Application first using AWS 
native services alone and then using the C3 
AI Suite in conjunction with AWS, there were 
several differences in both output as well as the 
development experience. 

Lines of Code

The native AWS application required 16,000 
lines of custom code, including documentation, 
plus 67,000 lines of code for base functionality. 
Conversely, using the C3 AI Suite required only 
1,450 lines of code including documentation 
due to the functionality provided by C3.ai Types. 
Similarly, the AWS Application required three 
highly experienced FTEs for 10 weeks, whereas 
the C3.ai Application was completed by one FTE 
in five days. 

Jupyter Integration

Developing the machine learning portions of the 
AWS Application required significant time. While 
the full functionality and benefits of the C3 AI Suite 
and C3.ai Type System are natively integrated 
with Jupyter Notebooks, the need to develop this 
functionality from scratch on AWS was a major 
impediment to data scientist productivity. 

API Creation and Publishing

The AWS Application required the development 
of custom APIs and front-end, comprising 
approximately 30% of the development effort. In 
contrast, the C3.ai Type System is fully REST API-
enabled, and the APIs are automatically created. 
The actual lines of code required for the C3.ai 
Application was orders of magnitude less than the 
custom Angular application and REST API built for 
AWS. 

Infrastructure Management

Another major difference between the two 
Applications was the time spent managing 
the underlying infrastructure. Using AWS, 
approximately 25% of our development time 
was focused on creating, configuring, and re-
configuring infrastructure. As the application 
matures, these infrastructure components 
require ongoing maintenance, taking developers 
away from more productive tasks (like building 
new AI applications). Infrastructure setup and 
management were of no concern in developing 
the C3.ai Application.

Time-Series Management

An important feature that reduced development 
time on C3.ai is C3.ai’s treatment of time-series 
data as a first-class operation. With AWS there 
was significant complexity arising from the need 
to manually handle datetime data using date 
library functionality and custom code. C3.ai native 
functionality is intuitive, which made configuring 
and adjusting a wide range of possible time-series 
computations very easy with no need for custom 
datetime handling. 
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Significant benefits of working on the C3 AI Suite compared to AWS native services alone included: 

Key C3 AI Suite Efficiencies

Figure 8 

Zero Infrastructure Setup
vs. nearly 25% of time spent on AWS 
infrastructure configuration

API Enabled Types
vs. hard-coded API methods that required 
20% of time to write and would require 
continued updates as the data model changes 

Type System in Jupyter Notebooks
vs. 10% of time spent in the difficult procedure 
to prepare data for SageMaker Algorithms

Built-In Time-Series Normalization
vs. 10% of time spent to build a risky 
implementation on AWS

Type Portability Across Stores
vs. 10% of time spent with a rigid system that 
would require a complex re-implementation to 
change storage mechanisms

UI Components Mapped to Types
vs. 15% of time spent hand-coding the full 
application UI in HTML & CSS with a 
JavaScript Framework
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AWS + C3.ai and AWS-only Implementation Comparison

As detailed in Figures 9 and 10 below, developing the Application on C3.ai in conjunction with AWS  
was 26 times faster than on AWS alone. 

Figure 9  
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Figure 10
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Conclusion

In this report, we have described our experience 
and key findings in using C3.ai in combination with 
AWS native services, in comparison to using only 
AWS services, to build a Predictive Maintenance 
Application for a network of devices. We have 
documented in the report how using the C3 AI 
Suite reduced the overall cost and effort required 
to build the application by a factor of 26 times, 
while also reducing development risks. The source 
code required was reduced from 83,000 lines of 
code to 1,450 lines of code by accelerating AWS 
development with the C3 AI Suite. 

Proven Results in 8-12 Weeks Visit c3.ai/get-started
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