
A Third-Party Report, Prepared & Written
by Premier Cloud Native System Integrator

AWS + C3.ai
Application Development
Time and Cost Savings

1© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Note from C3.ai

C3.ai commissioned a third-party system integrator – with extensive experience in
developing enterprise applications on the AWS cloud for Fortune 1000 customers –
to develop a Predictive Maintenance application for a network of devices, to run on
the AWS cloud. The system integrator was given a Product Specification and asked
to develop the same application using two approaches:

1.	 Build the application using only AWS native services;

2.	 Build the application using the C3 AI Suite in combination with AWS services.

The following report was written by the third-party system integrator to describe their
process in developing the application, including a detailed account of developer time,
effort, and coding required using each approach.

Readers can download the following documents as separate PDF files:

•	 Product Specification: Predictive Maintenance Application for a Network of Devices

•	 Complete Source Code for the AWS Application and for the C3.ai + AWS Application

https://c3.ai/wp-content/uploads/2020/04/Device-Predictive-Maintenance-Specification6.pdf
https://c3.ai/wp-content/uploads/2020/04/C3.ai-Device-Predictive-Maintenance-Source-Code.pdf

2© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Table of Contents
Third-Party Report

Executive Summary						 4

Background							 4

Findings								 5

Project Narrative						 8

AWS Build							 10

C3.ai + AWS Build							 16

Comparative Observations					 19

Conclusion							 23

3© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Third-Party Report
by AWS Premier
System Integrator

4© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Executive Summary

Based on recent research from renowned IT
and management consulting firms, the impact of
Artificial Intelligence (AI) on the global economy
is forecasted to be massive. In a 2016 report,
Forrester predicted that AI-driven companies
would realize $1.2 trillion in additional annual
economic value compared to their laggard peers
by 2020. This appears to have been a conservative
forecast. McKinsey Global Institute now forecasts
$3.5 - 5.8 trillion impact from AI by 2020.

While some of this value will accrue from
organizations applying AI to relatively simple
datasets and business processes (e.g., sales
forecasting, customer churn, facility energy
management), the bulk of this value will come
from organizations applying AI to complex
datasets and business processes (e.g., supply
network and inventory optimization, process
optimization, maintenance optimization, fraud
detection). These complex AI applications
require an architecture that ingests data from
multiple IoT and transactional systems in near-
real time; blends these data together; enhances

these data with master data from an array of
enterprise, operational, and third party data
sources; uses these unified data to train predictive
and optimization models to generate actionable
insights; and embeds these insights into a
business process.

The current trend for building even simple
enterprise AI applications is to take a
microservices “building blocks” approach,
where the end-customer and/or their consulting
partners integrate cloud service provider (CSP)
microservices together to build the componentry
to design, develop, host, and operate an
application, followed by building bespoke
application logic. C3.ai, on the other hand, offers
a cohesive, low-code platform – the C3 AI Suite.
This report compares the approach of using
CSP building blocks to using the C3 AI Suite in
conjunction with CSP microservices.

Our firm, a Premier AWS consulting partner with AWS competencies in Big Data and Machine Learning,
was commissioned by C3.ai to conduct the Device Predictive Maintenance development project described
in this document, and to prepare the following report of our findings and analysis.

Background

https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning

5© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Three of our senior commercial software
engineers built a simple Predictive Maintenance
application (the “Application”) using native AWS
services and compared it to building the same
Application on the C3 AI Suite in conjunction with
AWS services.

We found that C3.ai reduced the effort and
accelerated the development process by
a factor of 26 times, while also reducing
development risks. For less experienced teams,

this could easily increase to 50 - 100 times due to
the breadth and complexity of the AWS offering.
Further, C3.ai solves the challenges of security,
extensibility, and scalability – while streamlining the
skills needed in an enterprise development team.

To build the application using native AWS
services requires 83,000 lines of source code
and documentation. Using the C3 AI Suite with
AWS services required 1,450 lines of source
code and documentation, a 99% reduction.

Findings

Figure 1: The C3 AI Suite in combination with AWS provided a 26x improvement in developer productivity compared to building the same
application using only native AWS services.

Infrastructure Configuration

Data Model

Data Integration

Time-Series, Metrics, Machine Learning

Analytics

User Interface and Testing

Tasks

118.75

83,000

4.5

1,450

Total Effort (Person Days)

Total Lines of Code

AWS Application AWS + C3.ai Application

8.25

1

3

14

3

23

3

1

2

2.5

2

2

24.75

1

6

35

6

46

0

0.75

0.75

1.75

0.75

0.5

0

1

1

1

1

1

0

0.75

0.75

1.75

0.75

0.50

100%

25%

87.5%

95%

87.5%

98.9%

Days Days
Full-time

Equivalent
Persons

Full-time
Equivalent

Persons

Effort
(Person

Days)

Effort
(Person

Days)
Savings

6© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Time and Cost of Development

As this report illustrates, the C3 AI Suite
substantially accelerates development, allowing
customers to derive economic value from AI
applications faster than by building the necessary
platform components themselves.

Risk Mitigation

Even organizations with well-funded IT
departments and highly-skilled developers
face substantial risks in building, deploying, and
maintaining new applications. This risk increases
many-fold when the scope grows beyond one
simple application. The C3.ai Type System
reduces their exposure to the array of risks that
face a company developing custom, enterprise-
scale software.

Complexity

Stitching together core infrastructure, enterprise
software, platform services, data science services,
and UI components into a production-scale
application is a task of enormous complexity.
Companies that attempt to construct custom
AI platforms using building blocks risk pouring
time and resources into projects that fail to reach
production or deliver on their value proposition.
C3.ai, by abstracting away the underlying
infrastructure and presenting all data and services
as accessible, manipulatable Types, minimizes this
risk.

Extensibility

Companies that overcome the complexity of
building a single AI application face the risk that
their work will not be extensible – the data model
cannot be extended to serve a second application
or code is specific to infrastructure components
that the company has decided to abandon or that
have become obsolete. Applications built using
the C3.ai Type System are tied to metadata rather
than the underlying data and storage infrastructure
and are thus fully extensible to support new data
sources, infrastructure, algorithms, and platform
services.

Security

Getting a working application is complex enough
– encrypting all data in transit and at rest, limiting
access to data at the row and user level, and
guaranteeing backup, failover, and redundancy
add new layers of complexity and represent major
risks for applications that expose the enterprise’s
most sensitive data. C3.ai, which provides
accredited, comprehensive security measures as
part of its platform services, mitigates these risks.

Maintenance & Support

AI applications built from scratch risk breaking
when data sources, use cases, and support staff
change. Companies are forced to divert resources
to maintenance, which dilutes the value that AI
applications deliver, limits new development,
and increases the probability of abandoning
applications altogether. C3.ai mitigates this risk
in two ways – by offering a flexible platform
that requires less maintenance than a bespoke
solution, and by providing support resources and
training as part of its solution.

7© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Scalability

Infrastructure scalability is crucial to enable
applications built on small data sets to scale to
the enterprise. AWS enables scalability typically
through a manual process to request, provision,
and integrate additional compute and storage
resources. C3.ai employs a modular scale-
out architecture that automatically requests,
provisions, and releases computing resources
based on the need and makes it simple to add
more storage and other resources. Application
scalability is also crucial to enable organizations
to add more data, new sources of data, new
transforms of data coming from different parts
of the organization, or new application logic to
extend previously built use cases. Native AWS
development would require structural code
changes and rewriting the entire application to
incorporate these changes. C3.ai mitigates this
risk via the C3.ai Type System’s metadata-based
abstraction.

Resource Capability

AWS development requires a very broad skill set
in an organization’s developers. At the most basic
level, all developers need an understanding of
AWS development principles, while specific team
members might require a range of skills – ranging
from networking and Linux server configuration
to the specific details of the various managed
services – unique to each CSP, that come with
their own methods of utilization. Additionally,
organizations need to make a significant resource
investment in DevOps to ensure that what they are
building on AWS can mature in a safe and scalable
way. For reference, AWS recommends a year of
experience working in the AWS platform prior to
securing a basic AWS certification.

For C3.ai, a foundation in object-oriented concepts
such as inheritance and static typing as well as
exposure to the domain-specific syntax are the
only critical skills required to understand the
development approach. A typical C3.ai developer
receives five days of training and is usually
proficient in three months depending on skill level
and prior experience. 

8© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Project Narrative

Our team of highly skilled developers compared
building a simple Predictive Maintenance
Application on a network of connected devices
using native AWS services (the “AWS Application”)
to using the C3 AI Suite (the “C3.ai Application”)
with AWS services. In both cases, we sought to
ingest, unify, and federate the raw data, process it,
train a machine learning model that predicts which
device is likely to fail in the following 30 days, and
build an application user interface.

The provided datasets for the Application
included:

•	 Device type, location, manufacturer,
and date of manufacture

•	 Power grid status

•	 Device power source location

•	 Device telemetry

•	 Device event history

•	 Device power source data

Building a risk prediction model for each device
required that the telemetry/measurement data be
analyzed over time. For example, the Application
uses the following time-series data:

•	 Average Power per Device – Power usage
over time for the device

•	 Duration On per Device – The total amount
of time (in hours) that a device has been
powered on up to the interval

•	 Switch Count per Device – The number of
times a device is powered on or off

•	 Power Grid Status per Building – An external
factor indicating whether the local power grid
was functional over time at a specific building

The objective of the application is to predict the
likelihood of device failure within the next 30
days from a given point in time. It is left up to the
development team how to make this prediction,
although the industry best practice is to train a
machine learning model using the provided data.
With this predictive model in place, predictions
must be generated as new data is received for
each device.

To make the predictions actionable, they must be
presented to end users. The user interface for the
Application consists of two screens and seven
displays reporting on the number, location, risk
score, and status of devices as seen below:

9© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

A summary of key metrics including the total
number of devices at risk, the total number of
devices, and the number of failures YTD

1.

A map showing the location of all devices,
colored green for devices with risk scores
<50% and red for risk scores >50%

3.

A summary of key metrics including the
current risk score, status, power and
temperature of the selected device

1.

A histogram showing the distribution of
devices, grouped by risk score

2.

A table of device-level detail, including device
ID, risk score, type, manufacturer, and date of
install

4.

A chart illustrating the selected device’s risk
score over time

2.

Figure 2: UI Screen 1 – Four displays showing the status and health of the entire population of devices.

All elements on the screen can be filtered by multiple dimensions.

10© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

A summary of key metrics including the total
number of devices at risk, the total number of
devices, and the number of failures YTD

3.

Figure 3: UI Screen 2 – Three displays showing the health and history of an individual device (accessed by selecting a device from the table
in Screen 1)

AWS Build

The architecture for the AWS Application, as
depicted in Figure 4, made heavy use of AWS
managed services, including AWS Lambda for
serverless processing, Amazon Kinesis for data
streaming, Amazon S3 for storing raw data,
Amazon API Gateway for RESTful services, and
Amazon SageMaker for machine learning training
and inference. In addition, we utilized Amazon’s
Relational Database Service (RDS) and Amazon
DynamoDB, a NoSQL distributed key-value store
database, for persistence.

This architecture stems from our collective years
of experience working with AWS services. Our
firm is a Premier AWS consulting partner with
AWS competencies in Big Data and Machine
Learning, and we have developed and deployed
hundreds of applications on AWS for hundreds of
Fortune 1000 customers.

At the onset of the project, our team agreed to
eliminate the need for the low-level management
of server and network resources. This worked
well in practice and provided our developers with
the flexibility to manage multiple simultaneous
workstreams. By breaking the application
into numerous independent microservices/
components, the team was able to work in parallel
integrating each service while avoiding code
contention with the other developers.

11© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

 AWS Platform Architecture for Device Predictive Maintenance Application

Figure 4: AWS Architecture for Device Predictive Maintenance

12© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Infrastructure Configuration

Our work began with creating a new AWS account,
configuring basic networking, and establishing
access control and security policy permissions.
As we began development, the data lake and
necessary infrastructure for a data processing
pipeline was created. The data lake consisted of
Amazon S3, DynamoDB, and RDS. The processing
pipeline was a series of AWS Lambda functions
that were linked together by Amazon Kinesis
Streams, allowing data to flow through each
stage of ingestion, modeling, enhancement, and
transformation. These resources were managed
using Amazon’s infrastructure-as-code service,
AWS CloudFormation, to easily and quickly create
re-useable templates to provision and configure all
necessary infrastructure. The easiest component
of the architecture, the S3 data lake and its
associated data stores RDS and DynamoDB, took
0.5 FTE (full-time-equivalent) days to implement
and deploy. This was one of seven CloudFormation
templates, each growing in complexity as we built
up the architecture layers. Each CloudFormation
template ranged from hundreds to thousands of
lines of custom code.

Deployment was a manual process that involved
uploading the templates into CloudFormation
and then running them to create or update the
infrastructure. The AWS documentation reasonably
described which resource parameters are
necessary for a specific template resource and
the AWS console provided specific feedback if an
attempted template upload had errors or required
refactoring. While we were able to understand
and respond to these issues rapidly given our
experience with AWS, our assessment is that

a typical organization would need to build very
robust DevOps pipelines and devote significant
resourcing to ensure changes are promptly and
definitively pushed into the account.

With three FTEs and the scope, we configured
the AWS Application’s infrastructure in eight
days. An enterprise architecture team with less
experience on AWS would reasonably take at
least twice as long. It is notable that infrastructure
configuration is a continuous process throughout
the development lifecycle and requires ongoing
maintenance post-deployment. Each AWS
service we utilized has unique networking and
permissions configurations that must be tweaked
and debugged.

Data Model

To optimize for scalability, extensibility, and
usability, we designed the AWS Application to
leverage two databases. We used Amazon RDS,
a fully managed relational database service, to
store static structured data – device type, location,
manufacturer, etc. To create our relational data
model, custom SQL was hardcoded to define
each table in our database. This manual process
provided the necessary structure to easily store,
organize, and query data. We used Amazon
DynamoDB, a fully managed NoSQL distributed
key-value store database, to store dynamic data –
e.g., device telemetry. Unlike relational databases,
NoSQL databases do not require a pre-defined
data model.

Without two databases, we would be limited
in our ability to filter on data, explore data, and
evaluate the timed interval relationships between

13© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

data objects. It would also couple the scaling
of both data sources to a single configuration
setup. By separating the two storage services,
we can scale DynamoDB independently of
RDS for both improved performance and cost
savings compared to running a single, larger, and
more expensive RDS instance. A two-database
architecture was in sync with our microservice-
based approach.

While creating the AWS Application’s data model
was possible for one FTE in eight hours, an
enterprise architecture team with less experience
on AWS and internal constraints on database
structure would reasonably take twice as long.
Further – and this is extremely crucial given
our experience – changing or extending the
data model would require the data model to be
entirely refactored/rebuilt.

Data Integration

Our initial data integration effort involved manually
loading the raw CSV data via MySQL tooling. If the
data were in a different format it would have likely
involved writing either custom parsers or manually
converting the data into a more usable format
combined with potentially writing the raw SQL
commands to insert this data. Furthermore, this
process was entirely manual at the outset of the
project to “seed” the initial data with no process in
place for the ongoing ingestion of new data. While
this would not be a difficult process to engineer,
it would require more development time along
with a process to be put in place to allow for more
power sources, devices, apartments, etc., to be
introduced into the system for future use.

While integrating data required two FTEs for three
days, an enterprise architecture team with less
experience on AWS would reasonably take 50%
more time.

Time-Series Metrics and Machine Learning

Once we integrated the raw data, we began
preparing it for our machine learning process. To
create our time-series metrics/machine learning
features, we wrote custom logic in NodeJS and
used Amazon Lambda’s serverless computing
service to execute at run-time. Lambda allowed us
to easily deploy our custom logic and orchestrate
it with AWS streaming service Kinesis, with
less overhead and infrastructure configuration.
However, our team encountered difficulty
configuring the networking for the various AWS
services we utilized. While a serverless approach
typically removes the need for networking
considerations, using Amazon RDS necessitated
hands-on networking configuration. Our Lambda
functions had to be placed into subnets within
our VPC, which then required establishing VPC
Endpoints to connect out to the AWS managed
services such as AWS Key Management Service,
DynamoDB, and SageMaker. In addition, we had
to configure a new NAT Gateway to facilitate
our enhancement function to make calls over
the internet to the weather endpoint provided
by C3.ai. These changes required more manual
configuration of the networking layer and could
prove to be problematic for teams without a
strong knowledge of AWS networking concepts.
Additionally, this led to extra work that was not
estimated and required unplanned developer time.

14© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Another key difficulty was transforming our
time-series metrics into the proper format
for Amazon SageMaker. Rectifying this
required a trial-and-error process and relying
on colleagues with extensive experience
working with SageMaker and its DeepAR
algorithm. After revising and refactoring our
approach for building the raw model input,
we were able to successfully create a process
for building machine learning models and for
creating a request object that integrated with
SageMaker. This effort involved complex custom
code and changing the algorithm required
significant rework of the preparation process.
The lack of usability is one reason an iterative
approach needed to be taken until the process
fully integrated with SageMaker DeepAR. Once
the model and request object were successfully
created and integrated, it was easy to get
predictions from SageMaker. However, additional
code was required to join the predictions into the
data model and store in Amazon RDS.

Precision relates to the proportion of device
failures that were correctly predicted. Recall is the
proportion of actual high-risk devices that were
identified correctly. The area under the receiver
operating characteristic curve was .795.

While creating 13 time-series metrics and one
machine learning classifier was possible with
2.5 FTEs in 14 days, an enterprise architecture
team with less experience on AWS, especially
with AWS networking concepts, would
reasonably take twice as long given their lack
of experience.

Analytics

A separate process was created to evaluate and
save metrics based on specific rules and use
cases. Once a device measurement had been
ingested and transformed, an analytics service
written in Lambda was used to check if any rules
were satisfied. If so, a new record was saved
into RDS to mark the analytic as triggered and a
message was sent to Amazon Simple Notification
Service. This allows for emails, text messages,
or other notifications to be triggered so that
further action can be taken as a result – e.g.,
“Inspect this device.” Expanding the notifications
simply involves writing further use cases and
incorporating them into the analytics service.

While this was possible for two FTEs in three days
given the team’s expertise, a normal enterprise
architecture team would reasonably take 50%
more time.

User Interface

Building the Application’s UI required exposing
RESTful APIs that served the results of our
time-series metrics. To accomplish this, we
utilized Amazon API Gateway with Lambda
functions written in NodeJS. The API Gateway
configuration was completed in CloudFormation
using an OpenAPI specification combined with
specific configuration elements for the API
Gateway. Configuring Cross-origin resource
sharing (CORS), which enables the client
application to call the APIs directly from the
browser, in the CloudFormation templates was
challenging. We reverse engineered the methods
and headers that the API Gateway console

15© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

automatically adds when enabling CORS and
figured out the corresponding CloudFormation
syntax. We spent many iterations to successfully
set up and test CORS. The Device API accessed
RDS and DynamoDB, requiring different data
access methods to be written for each database
and different sets of permissions that needed to
be set up and configured in the CloudFormation
templates. It would be ideal to establish an
architecture that abstracts the data access
methods; however, it would require development
time to create and maintain the methods and
configuration to access those data stores. The
API was secured with an API key, which also
required moderately complex CloudFormation
configuration.

The UI components were built using Angular 6
and hosted with S3 and Amazon CloudFront.
TypeScript, SASS, RxJS, Angular Material,
and the Angular FlexLayout were the primary
front-end technologies utilized for the Angular
components. The components can be easily
added and removed without affecting the other
components on the page. We spent one FTE day
to ensure that duplicate API calls would not be
made for a component if another component
already retrieved the data. The components
share a service that provides the API results as a
RxJS observable. The observable provides the
API data for the components and will refresh the
components that are subscribed to it when new
data is generated. This allows the components
to efficiently retrieve data refreshed without a
postback for actions such as filtering. We used
client-side filtering, sorting, and paging for the

detail tables, but these actions will need to be
done on the server side if the quantity of data for
the component becomes too large. Server-side
filtering, sorting, and paging would add one week
to the development effort, plus two to three days
for unit testing.

Hosting the front-end application on S3 alone,
while possible, does not provide enough
granular control over permissions and routing.
We used CloudFront as an entry point to S3
and restricted access to only allow CloudFront
access to the S3 bucket via an Origin Access
Identity. Through CloudFront, we can enable
client-side routing functionality and manage the
access, custom error messages, and geographic
distribution. All the S3, CloudFront, and Origin
Access Identity setup was done through a
CloudFormation template.

While creating the Application’s UI and integrating
it with our backend architecture was possible with
two FTEs in 23 days, an enterprise architecture
team with less experience would reasonably take
20% more time.

16© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

AWS Implementation Timeline: 26 Person-Weeks

C3.ai + AWS Build

Figure 5

Device

DevicePowerSource

PowerGridStatus

DeviceMeasurement

DeviceEvent

DeviceWeather

PowerSource

Figure 6: Architecture to build Device PM on the C3 AI Suite.

C3 AI Suite

C

3.ai Model-Driven Architecture

C3.ai Model-Driven Architecture

C3.ai Integrated Development Studio

C
3.

ai
D

at
a

In
te

gr
at

or

AWS - Infrastructure as a Service

Infrastructure Configuration (S3, IAM,
CloudFormation)

Develop Data Model (RDS, Dynamo DB)

Integrate Data (S3, Kinesis, Lambda)

Develop Time Series, Metrics, and Machine
Learning (SageMaker, Lambda, DynamoDB)

Develop Analytics (Lambda, SNS)

Create APIs and UI (API Gateway, Angular)

AWS Build -
3 Full-time Equivalent Persons

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Developing the same Application with the C3 AI Suite in combination with AWS was much simpler.

17© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Infrastructure Configuration

The C3 AI Suite does not require any
infrastructure to be configured or maintained.
Deploying a new instance of the C3 AI Suite on
AWS takes four person hours. Deploying a new
C3.ai tenant within an existing instance on AWS
takes approximately three minutes.

Data Model

We began building the C3.ai Application by
creating C3.ai Types for use in our application.
Types are representations in code of any business
relevant objects – for instance, real-world entities
that make up a business – in this case, devices,
buildings, facilities, manufacturers, etc. Each Type
contains the metadata that define its relevant
datastores (distributed file system, relational,
NoSQL) and its relationships to other Types in the
data model (e.g., one facility has ten devices from
a single manufacturer). The C3.ai Type System
allows individuals with different functions and
specializations – e.g., developers, data scientists,
and business analysts – to work on a shared
abstraction layer without having to configure
or maintain the underlying data federation and
storage models, dependencies, or infrastructure.
Building the Application’s data model with the
C3.ai Type System required six hours and one
FTE.

Data Integration

We then used the C3 AI Suite’s native data
integration capabilities to integrate, index, and
normalize the device data. Prior to integrating
data, we created six canonical Types for each of
the data sources. The C3 AI Suite includes native

functionality to import data from any source –
while we worked with CSV files, the C3 AI Suite
includes pre-built connectors to commonly-used
relational databases, NoSQL databases, and
distributed file systems – and map all fields to
C3.ai Types for access by data scientists and
developers. Integrating data required six hours
and one FTE.

Time-Series Metrics

We then used our C3.ai Types to generate 13
metrics, which fetch Type data to produce a
normalized time-series. Metrics serve as features
in machine learning algorithms and can be
incorporated into application logic. We also wrote
some methods for the Device Type, which allow
for more complex calculations on the data using
JavaScript or Python. Creating the 13 metrics
required eight hours for one FTE.

Analytics

Next, we used the C3 AI Suite’s native
asynchronous processing engine to create data
flow events (DFEs). Using DFEs, we created three
analytics that automatically generate operator
alerts when certain operating thresholds were
met/exceeded. These alerts could be routed via
email or SMS messages. Creating these three
analytics and configuring the DFEs required
one FTE for six hours.

Machine Learning

We created risk-of-failure scores for the
Application’s devices using Jupyter Notebook
and Python, both supported natively by the C3
AI Suite. Having the full functionality of the C3 AI

18© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Suite and C3.ai Type System natively integrated
with Jupyter Notebook provides easy access for
data scientists to leverage tools that are familiar
and effective. We trained a classification model
that regressed the metrics SwitchCountWeek
and DurationOnInHours against the dependent
variable WillFailNextMonth to calculate the
probability of failure in the next 30 days. We stored
this rolling risk score as its own time-series metric
RiskScore. Machine learning algorithms in the C3
AI Suite operate on all existing data, create new
data that can be automatically attached to a C3.ai
Type for future processing, and automatically
update training and make predictions on the latest
available data.

For the C3.ai Application, the area under the
receiver operating characteristic curve was .990.
Training the machine learning model and the
machine learning pipeline required one FTE for
six hours.

User Interface

We incorporated several of our Types and metrics
in a web interface built using custom C3.ai HTML
and UI templates. We used these to create the
dashboard of the Application. The dashboard UI
template was one JSON-styled file that contained
the code for the components of the dashboard
such as a status map, a filter, a histogram and
a table. Our UI also included continuously and
automatically updated predictive risk scores about
the likelihood of device failures (incorporated
using the RiskScore metric). Finally, we created
a few simple potential roles that would be used
by future users of the Application. These roles
consisted of restricting users to permissions for
specific use cases pertinent to the user. Building
the UI and configuring access controls required
one FTE for four hours.

AWS + C3.ai Implementation Timeline: 1 Person-Week

Figure 7

Infrastructure Configuration

Develop Data Model

Integrate Data

Develop Time Series, Metrics,
and Machine Learning

Develop Analytics

Create APIs and UI

AWS + C3.ai Build -
1 Full-time Equivalent Person

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Comparative Observations

After building the Application first using AWS
native services alone and then using the C3
AI Suite in conjunction with AWS, there were
several differences in both output as well as the
development experience.

Lines of Code

The native AWS application required 16,000
lines of custom code, including documentation,
plus 67,000 lines of code for base functionality.
Conversely, using the C3 AI Suite required only
1,450 lines of code including documentation
due to the functionality provided by C3.ai Types.
Similarly, the AWS Application required three
highly experienced FTEs for 10 weeks, whereas
the C3.ai Application was completed by one FTE
in five days.

Jupyter Integration

Developing the machine learning portions of the
AWS Application required significant time. While
the full functionality and benefits of the C3 AI Suite
and C3.ai Type System are natively integrated
with Jupyter Notebooks, the need to develop this
functionality from scratch on AWS was a major
impediment to data scientist productivity.

API Creation and Publishing

The AWS Application required the development
of custom APIs and front-end, comprising
approximately 30% of the development effort. In
contrast, the C3.ai Type System is fully REST API-
enabled, and the APIs are automatically created.
The actual lines of code required for the C3.ai
Application was orders of magnitude less than the
custom Angular application and REST API built for
AWS.

Infrastructure Management

Another major difference between the two
Applications was the time spent managing
the underlying infrastructure. Using AWS,
approximately 25% of our development time
was focused on creating, configuring, and re-
configuring infrastructure. As the application
matures, these infrastructure components
require ongoing maintenance, taking developers
away from more productive tasks (like building
new AI applications). Infrastructure setup and
management were of no concern in developing
the C3.ai Application.

Time-Series Management

An important feature that reduced development
time on C3.ai is C3.ai’s treatment of time-series
data as a first-class operation. With AWS there
was significant complexity arising from the need
to manually handle datetime data using date
library functionality and custom code. C3.ai native
functionality is intuitive, which made configuring
and adjusting a wide range of possible time-series
computations very easy with no need for custom
datetime handling.

20© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Significant benefits of working on the C3 AI Suite compared to AWS native services alone included:

Key C3 AI Suite Efficiencies

Figure 8

Zero Infrastructure Setup
vs. nearly 25% of time spent on AWS
infrastructure configuration

API Enabled Types
vs. hard-coded API methods that required
20% of time to write and would require
continued updates as the data model changes

Type System in Jupyter Notebooks
vs. 10% of time spent in the difficult procedure
to prepare data for SageMaker Algorithms

Built-In Time-Series Normalization
vs. 10% of time spent to build a risky
implementation on AWS

Type Portability Across Stores
vs. 10% of time spent with a rigid system that
would require a complex re-implementation to
change storage mechanisms

UI Components Mapped to Types
vs. 15% of time spent hand-coding the full
application UI in HTML & CSS with a
JavaScript Framework

21© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

AWS + C3.ai and AWS-only Implementation Comparison

As detailed in Figures 9 and 10 below, developing the Application on C3.ai in conjunction with AWS
was 26 times faster than on AWS alone.

Figure 9

Infrastructure Configuration (S3, IAM,
CloudFormation)

Develop Data Model (RDS, Dynamo DB)

Integrate Data (S3, Kinesis, Lambda)

Develop Time Series, Metrics, and Machine
Learning (SageMaker, Lambda, DynamoDB)

Develop Analytics (Lambda, SNS)

Create APIs and UI (API Gateway, Angular)

AWS Build -
3 Full-time Equivalent Persons

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Infrastructure Configuration

Develop Data Model

Integrate Data

Develop Time Series, Metrics,
and Machine Learning

Develop Analytics

Create APIs and UI

AWS + C3.ai Build -
1 Full-time Equivalent Person

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

22© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Figure 10

Infrastructure Configuration

Data Model

Data Integration

Time-Series, Metrics, Machine Learning

Analytics

User Interface and Testing

Tasks

118.75

83,000

4.5

1,450

Total Effort (Person Days)

Total Lines of Code

AWS Application AWS + C3.ai Application

8.25

1

3

14

3

23

3

1

2

2.5

2

2

24.75

1

6

35

6

46

0

0.75

0.75

1.75

0.75

0.5

0

1

1

1

1

1

0

0.75

0.75

1.75

0.75

0.50

100%

25%

87.5%

95%

87.5%

98.9%

Days Days
Full-time

Equivalent
Persons

Full-time
Equivalent

Persons

Effort
(Person

Days)

Effort
(Person

Days)
Savings

23© 2020 C3.ai | All Rights Reserved | 20_0511

Third-Party Report by AWS Premier System Integrator

Conclusion

In this report, we have described our experience
and key findings in using C3.ai in combination with
AWS native services, in comparison to using only
AWS services, to build a Predictive Maintenance
Application for a network of devices. We have
documented in the report how using the C3 AI
Suite reduced the overall cost and effort required
to build the application by a factor of 26 times,
while also reducing development risks. The source
code required was reduced from 83,000 lines of
code to 1,450 lines of code by accelerating AWS
development with the C3 AI Suite.

Proven Results in 8-12 Weeks Visit c3.ai/get-started

1300 Seaport Boulevard, Suite 500, Redwood City, CA 94063

	Executive Summary
	Background
	Findings

	Project Narrative
	AWS Build
	C3.ai + AWS Build
	Comparative Observations

	Conclusion

